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Abstract Statistical challenges often preclude comparisons among different sea surface temperature
(SST) reconstructions over the past million years. Inadequate consideration of uncertainty can result in
misinterpretation, overconfidence, and biased conclusions. Here I apply Bayesian hierarchical regressions
to analyze local SST responsiveness to climate changes for 54 SST reconstructions from across the globe
over the past million years. I develop methods to account for multiple sources of uncertainty, including the
quantification of uncertainty introduced from absolute dating into interrecord comparisons. The estimates
of local SST responsiveness explain 64% (62% to 77%, 95% interval) of the total variation within each SST
reconstruction with a single number. There is remarkable agreement between SST proxy methods, with
the exception of Mg/Ca proxy methods estimating muted responses at high latitudes. The Indian Ocean
exhibits a muted response in comparison to other oceans. I find a stable estimate of the proposed
“universal curve” of change in local SST responsiveness to climate changes as a function of sin2(latitude)
over the past 400,000 years: SST change at 45∘N/S is larger than the average tropical response by a factor
of 1.9 (1.5 to 2.6, 95% interval) and explains 50% (35% to 58%, 95% interval) of the total variation between
each SST reconstruction. These uncertainty and statistical methods are well suited for application across
paleoclimate and environmental data series intercomparisons.

1. Introduction

Most research on global paleoclimatic temperature patterns has focused on detailed reconstructions of single
points in time, such as the Last Glacial Maximum (LGM, 19–23 kyr ago) [e.g., Climate: Long-Range Investigation,
Mapping, and Prediction (CLIMAP) Project Members, 1981; Multiproxy approach for the reconstruction of the
glacial ocean surface (MARGO) Project Members, 2009]. Research results based on a single time slice, however,
may not be generalizable beyond their particular point in time. Such research also assumes that functional
relationships are linear and estimates their slopes using only two points: the single time slice as compared to
the present [e.g., Rohling et al., 2012; Shakun et al., 2012]. Other studies have focused on comparisons of proxy
reconstructions from a single ocean core to global climate variables over time [e.g., Genthon et al., 1987; Lorius
et al., 1990; Lea, 2004]. Single cores also have been used to compare different proxy methods on the same core
samples [e.g., Barrows et al., 2007]. Research on single cores, however, cannot investigate spatial patterns and
the importance of other core-specific variables.

New databases of proxy records have the potential to provide unique contributions to our understanding
of the climate system. Unfortunately, such databases are highly underutilized. Common barriers to inter-
comparisons among different proxy reconstructions are different timescales, inconsistent representations of
uncertainty, and a concern that core-specific differences, such as proxy type, ocean, and latitude, prohibit
useful comparisons. Given the potential for large uncertainties in paleoclimate reconstructions, it is imper-
ative that any investigation includes rigorous consideration of uncertainty and robust statistical methods
that account for the nature of the latent process and the proxy data. Inadequate consideration of these
uncertainties, as well as model misspecification in terms of the nature of the process and/or the data, can
result in misinterpretation, overconfidence, and biased conclusions about the climate system.

There is a growing literature that employs Bayesian models to overcome these challenges. Clark and Gelfand
[2006] discuss a variety of applications of Bayesian hierarchical models across the environmental sciences.
For example, Haslett et al. [2006] develop a hierarchical Bayesian model to explicitly model uncertainty in
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reconstructing climate histories from fossil pollen over the last 12,000 years. Additionally, Li et al. [2007, 2010a]
employ Bayesian models, bootstrapping, and cross validation to explicitly account for different sources of
uncertainty in proxy reconstructions of Northern Hemisphere average temperature over the past thousand
years. In another example, Tingley and Huybers [2010] develop a hierarchical Bayesian algorithm to assimi-
late both proxy and instrumental data sets and estimate uncertainty in climate anomalies in time and space.
Tingley et al. [2012] summarize recent statistical approaches to paleoclimate reconstructions of the past
thousand years. Most recently, Lin et al. [2014] present a probabilistic stratigraphic alignment algorithm to
determine Bayesian confidence intervals for oxygen isotope alignment.

In this research, I extend these Bayesian methods to assess patterns in sea surface temperature (SST) change
over the past million years. I investigate the relationship between different SST reconstructions and major
climate indicators, quantifying the influences of latitude, ocean, and proxy method on changes in local SST.
To explore these questions, I compile a database of SST reconstructions over the past million years, including
multiple proxy reconstruction methods (section 2). Uncertainty analysis methods are developed to estimate
and propagate several sources of uncertainty in the proxy records (section 3). In order to analyze variations
both within a given SST reconstruction as well as between different SST reconstructions, I apply Bayesian
hierarchical regressions (section 4). I then discuss major results (section 5) and key conclusions (section 6).

2. Paleoclimate Data

This analysis uses a multiproxy approach to reconstruct sea surface temperature. I develop a SST database
from an extensive literature review of hundreds of published SST reconstructions. The database includes
SST reconstructions based off geochemical paleothermometers (using alkenone unsaturation indices (Uk′

37)
and ratios of Mg/Ca in planktonic foraminifera) and SST reconstructions based off microfossil abundances
(using transfer functions for planktonic foraminifera and radiolarians). A multiproxy approach enables the
reduction of the uncertainties and potential biases specific to each proxy method by combining estimates
from several independent proxies [Mix et al., 2001; Li et al., 2010b; Jones et al., 2009].

To be included in the database, the reconstructions must have covered at least the past 100 kyr (cal kyr B.P.)
with minimum average resolution of 10 kyr. I exclude records that are known to represent extreme local
variations and not regional climate changes per literature or have significant quality concerns raised in the
literature. I supplement this literature review with an investigation of the adjusted R2 of each SST reconstruc-
tion with Antarctic temperature deviations [Jouzel et al., 2007], using a low threshold of R2 equal to 0.2 to
indicate the need for further investigation. I exclude records that have been contradicted and criticized in
the literature. Where possible, I update older reconstructions with more recent and widely accepted calibra-
tion equations. The final SST database includes 54 SST reconstructions: 23 from alkenone indices, 16 from
species assemblages methods, and 15 from Mg/Ca ratios (Figure 1, Table 1, and Data Set S1 in the supporting
information). There are a total of 12,105 point reconstructions of SST. It is important to note that the records
have limited geographical distribution, variable length, and variable resolution. The following discussion
summarizes the critical uncertainties for each proxy method to illustrate the drivers of the uncertainty
estimates.

Alkenones are sedimentary organic molecules (specifically long-chained unsaturated ethyl and methyl
ketones) produced by some haptophyte algae in open marine waters. The relative abundances of unsatu-
rated forms of alkenones (represented in alkenone indices, Uk′

37) are thought to reflect seawater temperature
during their production. Some potential limitations of alkenone indices as SST proxies include the following:
nonlinear responses at high and low temperature extremes [Mix et al., 2001; Bard, 2001]; bioturbation
and redeposition [Mix et al., 2001; Barrows et al., 2007]; peak production at subsurface depths, in seasonal
blooms, and/or related to nutrient flows and upwelling [Mix et al., 2001; Barrows et al., 2007; Horikawa et al.,
2006; Weldeab et al., 2007a; Seki et al., 2007]; and the lack of understanding of the use and synthesis of
alkenones [Gonzalez et al., 2001]. At high latitudes, the seasonality of alkenone production seems to be more
pronounced, and the reconstructed SST at high latitudes is thought to be more representative of summer
than mean annual growth conditions [Mix et al., 2001; Weaver et al., 1999; Bard, 2001].

The Mg/Ca ratio in biogenic calcite from foraminifera shells varies systematically with the seawater tem-
perature at calcification. The Mg/Ca ratios can be used to calculate both SST and deep water temperature
from planktonic and bottom-dwelling foraminifera, respectively. Some potential limitations of Mg/Ca ratios
as SST proxies are differential dissolution and secondary growth [Mix et al., 2001; Brown and Elderfield, 1996],
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Figure 1. Distribution in space of the 54 SST proxy reconstructions used in this analysis (see section 2 and Table 1). The shapes indicate the SST proxy method:
alkenone indices in asterisks, Mg/Ca ratios in plus signs, and species assemblages methods in solid circles.

Table 1. Database of Paleoclimate Reconstructions

Record Citation Latitude Longitude Start Date (yr B.P.) End Date (yr B.P)

Alkenone Indices SST Proxy Reconstructions

1 Bard [2002] 38∘N 10∘W 0 110,100

2 Bard et al. [1997] 0∘S 46∘E 0 151,500

3 Bard et al. [1997] 3∘N 50∘E 0 149,200

4 Clemens et al. [2008] 19∘N 116∘E 4,178 4,690,916

5 Eglinton et al. [1992] 21∘N 18∘W 736 653,042

6 Horikawa et al. [2006] 0∘N 95∘W 1,100 154,097

7 Lawrence et al. [2006] 3∘S 91∘W 5,230 5,089,802

8 Müller et al. [1997] 20∘S 9∘E 3,300 402,900

9 Pahnke and Sachs [2006] 46∘S 175∘E 1,950 156,360

10 Pahnke and Sachs [2006] 40∘S 178∘E 3,320 135,050

11 Pelejero et al. [1999] 15∘N 111∘E 0 221,100

12 Pelejero et al. [1999] 8∘N 112∘E 0 142,290

13 Pelejero et al. [2006] 42∘S 170∘E 3,570 288,540

14 Pelejero et al. [2006] 44∘S 150∘E 5,045 459,632

15 Rostek et al. [1997] 14∘N 53∘E 2,300 152,600

16 Sachs and Anderson [2003]; Pahnke and Sachs [2006] 41∘W 9∘E 6,080 160,000

16 Schneider et al. [1995] 6∘S 10∘E 400 189,000

17 Schneider et al. [1995] 12∘S 11∘E 1,300 200,600

19 Sicre et al. [2000] 25∘N 16∘W 5,000 144,000

20 Villanueva et al. [1998] 43∘N 30∘W 2,900 285,900

21 Yamamoto et al. [2004];Yamamoto et al. [2007] 32∘N 119∘W 870 157,048

22 Yamamoto et al. [2004];Yamamoto et al. [2007] 34∘N 122∘W 3,186 136,475

23 Zhao et al. [2006] 9∘N 110∘E 905 148,886

Mg/Ca Ratio SST Proxy Reconstructions

24 de Garidel-Thoron et al. [2005] 2∘N 142∘E 7,000 1,755,000

25 Lea [2004] 2∘N 91∘W 1,000 361,000

26 Lea et al. [2006] 0∘N 92∘W 1,200 135,100
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Table 1. (continued).

Record Citation Latitude Longitude Start Date (yr B.P.) End Date (yr B.P)

27 Mashiotta et al. [1999] 43∘S 80∘E 2,700 293,700

28 Mashiotta et al. [1999] 56∘S 115∘W 8,110 108,450

29 Medina-Elizalde and Lea [2005] 0∘N 159∘E 4,300 1,348,000

30 Nürnberg et al. [2000] 2∘S 12∘W 240 274,630

31 Nürnberg et al. [2000] 6∘S 11∘W 1,000 271,000

32 Oppo and Sun [2005] 20∘N 118∘E 1,943 142,571

33 Pahnke et al. [2003] 45∘S 175∘E 1,951 340,835

34 Rickaby and Elderfield [1999] 40∘S 85∘E 4,750 196,710

35 Rickaby and Elderfield [1999] 44∘S 90∘E 3,600 283,670

36 Saraswat et al. [2005] 3∘N 78∘E 5,434 137,333

37 Wei et al. [2007] 20∘N 117∘E 1,740 261,300

38 Weldeab et al. [2007b] 2∘N 9∘E 360 155,420

Species Assemblages SST Proxy Reconstructions

39 Barrows et al. [2007] 42∘S 170∘E 3,830 142,712

40 Barrows et al. [2007] 46∘S 175∘E 5,401 133,995

41 Brathauer and Abelmann [1999] 43∘S 12∘E 387 338,519

42 Kandiano et al. [2004] 54∘N 20∘W 2,375 193,065

43 Labeyrie et al. [1996]; Rickaby and Elderfield [1999] 46∘S 96∘E 4,590 149,250

44 Martinson et al. [1987] 44∘S 80∘E 750 294,000

45 Pisias and Mix [1997] 0∘N 96∘W 360 752,047

46 Pisias and Mix [1997] 3∘S 83∘W 1,914 151,051

47 Pisias and Mix [1997] 0∘N 110∘W 880 144,763

48 Pisias and Mix [1997] 0∘N 86∘W 1,479 154,653

49 Pisias and Mix [1997] 16∘S 78∘W 785 466,520

50 Weaver et al. [1998] 44∘S 172∘W 0 170,000

51 Weaver et al. [1998] 46∘S 172∘E 0 116,705

52 Weaver et al. [1998] 45∘S 179∘E 170 120,880

53 Weaver et al. [1998] 43∘S 178∘W 0 154,600

54 Weaver et al. [1999] 60∘N 23∘W 0 120,000

Climate Indicators

c1 Jouzel et al. [2007] 75∘S 123∘E 38 801,662

c2 Cuffey and Vimeux [2001] 78∘S 107∘E 400 350,000

c3 Kawamura et al. [2007] 77∘S 39∘E 750 339,500

c4 Masson-Delmotte et al. [2005] 73∘N 38∘W 100 100,000

c5 Masson-Delmotte et al. [2006] 75∘N 42∘W 0 122,400

c6 Lüthi et al. [2008] composite composite 137 798,512

c7 Lüthi et al. [2008];Loulergue et al. [2008] composite composite 13 799,396

c8 Lisiecki and Raymo [2005] composite composite 0 5,320,000

the cleaning and measurement procedures [Mix et al., 2001; Barker et al., 2003; Lea et al., 2005; Weldeab et al.,
2006], uncertain calcification depth and timing [Anand et al., 2003; Kucera et al., 2005a; Regenberg et al.,
2009], and complications by pH, salinity, upwelling, and species-specific effects [Mix et al., 2001; Elderfield and

Ganssen, 2000; Lea et al., 1999; Nürnberg et al., 2000; Robinson et al., 2008]. High-latitude SST reconstructions
with Mg/Ca ratios have also found significant bias and uncertainty, including a tendency to under predict
variations [Kandiano et al., 2004; Barker et al., 2005; Meland et al., 2005].

SST reconstructions estimated from microfossils abundances use a variety of empirical statistical methods,
with the common assumption that the modern spatial patterns of species abundance are controlled by the
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same mechanisms that control changes through time at any site [Mix et al., 2001; Birks et al., 2010]. Recent
research supports using a combination of analytical methods to reduce overall bias and assess reliability
[Kucera et al., 2005b; Barrows et al., 2007]. SST reconstructions from species abundance are potentially limited
by the lack of a suitable modern analog for some geologic samples, the lack of understanding of the ecology
of each fossil group, the effects of interdependent environmental variables, the bioturbation of modern core
tops, and dependence on the calibration data set [Mix et al., 2001; Kucera et al., 2005a, 2005b; Birks et al., 2010;
Robinson et al., 2008; Telford et al., 2013]. Species abundance reconstructions of SST tend to be inherently more
noisy than geochemical reconstructions because of the presence of variables other than temperature that
influence species abundances [Barrows et al., 2007]. Moreover, the planktonic foraminifera assemblage data
may reflect subsurface temperature not SST [Telford et al., 2013]. When more than one SST reconstruction
is available from species abundance methods, I analyze separately the different analytical methods and warm/
cold season outputs and find that the regression coefficient estimates are not significantly different from each
other. Therefore, I use a single-average compiled SST reconstruction with a variance estimate covering the
different seasons and methods.

In addition to the SST proxy records, eight different paleoclimate records that are thought to be indicators
of major climate changes are included for comparison (Table 1): polar temperature reconstructions from
Antarctica and Greenland using deuterium excess, carbon dioxide radiative forcing and total greenhouse gas
(GHG) radiative forcing, and a stack of 57 globally distributed benthic marine records of deep-sea oxygen-18
isotopes. I reconstruct the greenhouse gas radiative forcing estimates from Antarctic ice core gas records for
methane and carbon dioxide using the global forcing equations from Hansen et al. [2008].

3. Paleoclimate Proxy Uncertainty Quantification

For the local SST proxy reconstructions there are five major sources of uncertainty: (1) error in the direct mea-
surement of the proxy itself; (2) error in the proxy calibration; (3) structural uncertainty in the proxy method; (4)
time averaging of the sample, both from natural and sampling processes; and (5) absolute dating uncertainty.

Estimates of the measurement and calibration errors are available from lab and field experiments for the dif-
ferent proxy methods (for example, from alkenone indices [Müller et al., 1998; Herbert, 2001], Mg/Ca ratios
[Mashiotta et al., 1999; Elderfield and Ganssen, 2000], and species assemblages [Barrows et al., 2007]) and
typically range from 1∘C to 3∘C for two standard deviations. However, the published uncertainty estimates
often do not include considerations of structural uncertainty from the assumptions of the proxy method.
For example, the proxy calibration process assumes that the relationship found today will hold for the differ-
ent climatic and chemical conditions of the past. However, evolution and other environmental changes could
produce different relationships in the past than found in the present. Another assumption is that the only
variable that would cause changes in the proxy value is the particular variable of interest, because otherwise
changes in other variables could bias the inferences (social scientists call this effect “omitted variable bias”).
Therefore, I use the upper range of the published values of 3∘C (95% interval) as an estimate for the combined
uncertainty for each of the SST proxy methods.

It is imperative that comparisons between paleoclimate records include the uncertainty in matching which
parts of each record occurred at the same point in time [Haam and Huybers, 2010; Lin et al., 2014; Breitenbach
et al., 2012; Werner and Tingley, 2015]. Dating uncertainty can be a significant limitation, especially for compar-
isons of periods of rapid change or analyses of leads and lags of different variables. Few studies have analyzed
the effects of dating uncertainty, and even fewer have propagated the dating uncertainty in their reconstruc-
tions and analyses [Lin et al., 2014]. Here I develop a technique to estimate the contribution of such uncertainty
to interrecord comparisons using nonparametric regressions, enabling such uncertainty to be propagated in
a full uncertainty analysis. I use the estimate of 10 kyr (95% interval) for dating uncertainty from orbital tuning
[Martinson et al., 1987; Huybers and Wunsch, 2004; Huybers, 2007; Lin et al., 2014], unless papers provide specific
estimates of uncertainty in their timescales.

When comparing independent records, a(tp) and b(tq), using uncertain absolute timescales, it is necessary to
estimate a(tp) at tq, called âq. To estimate âq, I take a weighted average of the time series a(tp) around the time
point tq. The amount of dating uncertainty in b(tq), called st[q], sets the breadth of sampling around the time
point tq: greater dating uncertainty means wider sampling of a(tp). Weights for the weighted average, 𝜔pq,
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Figure 2. Illustration of combining estimates of both proxy uncertainty and dating uncertainty for a proxy reconstruction. (a, c) The raw Antarctica Dome
Concordia temperature deviation record as a solid black line [Jouzel et al., 2007]. (b, d) The estimated uncertainty (section 3) due to a timescale uncertainty
of 10,000 years (95% interval), which is typical for SST reconstructions, is shown as a dotted red line. Note that the high uncertainty in temperature from dating
uncertainty arises during times of rapid temperature change in the record, whereas periods of relatively stable temperature have low associated uncertainty
from dating error (see shaded periods for examples). Figure 2d shows the proxy uncertainty in polar temperature reconstruction of 3∘C (95% interval), which is
constant over time, in a dashed black line. The two sources of uncertainty (proxy and dating) are summed as variances and displayed as the solid blue line in
Figure 2d and the blue shading in Figure 2c (95% interval).

are determined based on the distance in time between tp and tq, and the bandwidth parameter, hq, is equal
to st[q]: the closer to time tq, the more heavily weighted the data point.

âq =
n∑

p=1

𝜔pqap (1)

𝜔pq = 𝜙q

(
tp

)
∕

n∑
p=1

𝜙q

(
tp

)
ap (2)

𝜙q(tp) =
(

2𝜋h2
q

)−0.5
∗ exp

[
−
(

tp − tq

)2 ∕2h2
q

]
(3)

A similar method is used to estimate the uncertainty in the estimate of âq, variance ŝ2
a[q]. I estimate the

weighted average of the squared difference between every point in a(tp) and the estimated âq, called the
residuals; r̂2

pq are equal to (ap − âq)2. The weights are the same as before. This method is a local constant
simplification of the method discussed by Fan and Yao [1998] for the estimation of conditional variance
functions in stochastic regression.

ŝ2
a[q] =

n∑
p=1

𝜇pqr̂2
pq (4)

𝜇pq = 𝜙q

(
tp

) n∑
p=1

𝜙q

(
tp

)
r̂2

pq (5)

This method is implemented using the Nadaraya-Watson kernel-weighted local constant regression modified
to include a locally varying bandwidth, using the function “ksmooth” in the R statistical program (http://stat.
ethz.ch/R-manual/R-patched/library/stats/html/ksmooth.html); see Text S1. The method allows the band-
width to vary by time point, which is essential for the many reconstructions whose dating uncertainty
increases for samples farther back in time, causing heteroscedasticity in the dating error. Rehfeld et al. [2011]
support the use of Gaussian kernels as a reliable and more robust estimate for dealing with irregular sampling.
Figure 2 shows the results for a single record and illustrates how periods of rapid temperature change in the
record dating uncertainty can increase total uncertainty by over 50%.
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A limitation of this method is that it does not include the unidirectional nature of time. Unless there was
depositional disturbance, one can be confident that shallower deposits are younger than deeper deposits
and thus both time and deposition are unidirectional in nature. In other words, we know that measurements
deeper down in the ocean core are older than the shallower measurements and this should constrain our
estimates of uncertainty in a time series. Therefore, this method may be overly conservative in its uncertainty
estimation results.

Kheshgi and Lapenis [1996] also identified the importance of translating dating errors into temperature errors
before comparing different reconstructions, but their proposed method necessitated assumptions about the
distribution of temperature variability. In contrast, the method described here allows dating uncertainty to
vary by time point in each record and does not assume variability characteristics.

Breitenbach et al. [2012] develop a software package, COPRA1.0, that uses a Monte Carlo simulation to translate
dating uncertainties to uncertainties in the proxy values, leveraging absolute dating points, layer counting,
and/or marker boundaries. In many ways, this paper’s method is a simplification of the approach of
Breitenbach et al. [2012], similarly focused on transferring the dating uncertainty into the SST uncertainty at
a certain time point and using a weighted average around the time point to do so. The one exception is that
the Breitenbach method does not have the limitation as noted above of not preserving the unidirectional
nature of time. However, the reconstructions used by this research do not have sufficient dating estimates
for the method, because most of the age scales are based on orbital tuning. In addition, Werner and Tingley
[2015] use a Bayesian hierarchical reconstruction model to quantify uncertainty across multiple possible age
models, with a focus on reconstructions and dating resources available over the last 2 kyr.

For the records in this analysis, the estimated amount of time averaging is significantly less than the estimated
uncertainty in absolute age. Had this not been the case, all records could have been first smoothed to
the same amount of time averaging using the Nadaraya-Watson kernel-weighted local constant regression,
as described above, with the larger time-averaging range taken as the 95% interval for the smoothing
bandwidth.

I assume that the various sources of uncertainty are independent, and thus, I sum variances to propagate
errors. I convert each SST reconstruction into a deviation by subtracting the mean SST of each record over the
past 100 kyr (the longest period that all the records share) to minimize artifacts due to absolute temperature
variations between SST reconstructions. Figure 2 illustrates the full estimate of temperature uncertainty that
includes both estimates in proxy uncertainty and dating uncertainty.

4. Statistical Methods
4.1. Traditional Statistical Approach
To assess patterns in SST change within and between different SST reconstructions, a variable termed “local
SST responsiveness” is defined and estimated. Local SST responsiveness is the change in SST at a particular
ocean core relative to changes in a “standard” record. In this research, paleoclimatic reconstructions that are
thought to indicate global/major climate changes serve as the standard record of comparison. Eight different
climate indicators are used to quantify the methodological uncertainty associated with the choice of indicator
record (section 2). This concept is analogous to Rohling et al.’s [2012] estimates of “mean long-term linear
temperature response” in their investigations of climate sensitivity.

Figure 3 shows example scatterplots of changes in local SST to changes in GHG radiative forcing. The slope of
the linear relationship of change in local SST to change in GHG radiative forcing is the local SST responsiveness
and can be assessed through a linear regression. For one SST reconstruction, the regression of change in SST
as a function of change in a climate indicator can be assessed using a weighted least squares regression with
estimates of uncertainty in the SST proxy reconstructions:

ŷt ∼ N
(

Xt𝛽, �̂�
2
yt

)
(6)

where t is time, ŷt is the change in SST at time t (single value), Xt is the change in the climate indicator at time
t (single value), 𝛽 is the local responsiveness of SST reconstruction to the climate indicator (single value), and
�̂�2

yt
is the variance for the predicted ŷt value (single value).
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Figure 3. Examples of simple regression analyses of changes in GHG
radiative forcing on the x axis with changes in SST on the y axis from
(a) the North Atlantic using alkenone indices [Eglinton et al., 1992],
from (b) the South Pacific using Mg/Ca ratios [Pahnke et al., 2003], and
from (c) the tropical Pacific using faunal assemblages [Pisias and Mix,
1997]. Each point in the figure represents a single time point, with
glacial maxima time points in the lower left corner and interglacial
time points in the upper right corner. The grey bars are the 95%
intervals estimated from proxy uncertainty and dating uncertainty
(see section 3). The black dashed lines are the results from a weighted
least squares regression analysis. The slopes of these lines are
estimates of the local SST responsiveness for each reconstruction
(see Figure 4 for all 54 SST reconstructions).

The resulting estimate of local SST respon-
siveness is plotted for each reconstruction
in Figure 4, using GHG radiative forcing
as the climate indicator. The adjusted R2

statistic (Figure 5a) reflects the percent
of local SST variation for each reconstruc-
tion that is explained by changes in the
climate indicator. In addition to a linear
relationship, I also test three additional
functional relationships: the climate indi-
cator leading by one time step (1 kyr),
the climate indicator lagging by one time
step (1 kyr), and a quadratic of the climate
indicator. I find that the real-time linear
relationship is the best fit of the four func-
tional relationships, with fit assessed from
the adjusted R2 estimates. It is worth not-
ing that the time resolution of this analysis
(1 kyr) is significantly longer than the typ-
ical lead/lag differences discussed in the
literature between CO2 forcing and tem-
perature [e.g., Shakun et al., 2012].

The regressions are then repeated inde-
pendently for each of the 54 reconstruc-
tions against each of the eight climate
indicators (the distributions of individ-
ual adjusted R2 estimates are shown in
Figure 5b and the regression results are
in Table S1). This is a “no pooling” imple-
mentation from a Bayesian perspective,
because all the SST reconstructions are
investigated independently from one
another. Rohling et al. [2012] performed
a similar statistical analysis comparing 36

SST records through independent regression with reconstructions of changes in global radiative forcing over
the past 520 kyr.

Local SST responsiveness is found to be an effective summary statistic characterizing the variation in each of
the SST reconstructions (see section 5.1 for more discussion). These results spur subsequent questions: how
does responsiveness vary by proxy, by time period, by ocean, by longitude, by latitude? A simple approach
would be to regress the local SST responsiveness results against SST reconstruction-specific variables, such
as proxy method and ocean, using a weighted least squares regression using estimates of uncertainty in the
responsiveness estimates:

𝛽j ∼ N
(

UjG, 𝜎
2
𝛽

)
(7)

where j is the index over the 54 SST reconstructions; 𝛽j is the local responsiveness of SST reconstruction j to the
climate indicator estimated from independent regressions (single value); Uj are the reconstruction-specific
variables such as proxy method and ocean basin (vector); G are the coefficients for how the U variables
influence 𝛽 (vector); and 𝜎2

𝛽
is the variance for the predicted 𝛽 value (single value).

The results of such a regression are plotted in Figure 4 and listed in Table S2. The major limitation of this
approach is that the sample size (and thus the degrees of freedom) is dramatically reduced to only 54 recon-
structions. Such a simplification of the data limits the number of questions and variables that can be explored,
especially interactive variables, and also potentially reduces the significance of the results. Moreover, such
a strategy would insufficiently characterize the structure of the uncertainty in the estimates, which should
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Figure 4. Latitudinal pattern of local SST response to changes in
radiative forcing from GHGs. Each point represents the local SST
responsiveness of one proxy reconstruction to climate change,
represented here by deviations in GHG radiative forcing, as estimated
from independent regressions (section 4.1). Colors indicate the
temperature proxy method (alkenone indices in blue circles, Mg/Ca
ratios in red triangles, and species assemblage methods in green
squares). Error bars display 95% intervals. The equator-to-pole
gradient of SST response is estimated from a regression of the 54
responsiveness values against sin2(latitude): the dashed line is the
estimate, and the grey area is the 95% interval from the single
regression.

include both the uncertainty within the SST
reconstructions as well as the uncertainty
in the estimate of local SST responsiveness
from the previous regressions.

Another methodological alternative would
be to implement a multivariate regression
model where all the observations are
modeled in a single model that includes
independent variables for each of the
reconstruction-specific variables, as well
as the observation-specific variables. This
method has the limitations of insufficient
characterization for the uncertainty in the
estimates, because the regression ignores
that groups of observations come from
the same reconstructions with correlated
uncertainty. Additionally, interactive vari-
ables in this model cause multicollinearity
and unstable results, as well as large reduc-
tions in degrees of freedom. Therefore, I
develop a Bayesian hierarchical regression,
which does not have these limitations, to
assess the patterns of variation within and
between SST reconstructions.

Figure 5. Percent variance explained within the SST reconstructions by the local SST responsiveness metric.
(a) Histogram and empirically fit frequency distribution of the 54 adjusted R2 values from the 54 independent
regressions in Figure 4. (b) The same distributions as Figure 4a repeated for each of the eight climate indicators.
Empirically fit frequency distributions of the adjusted R2 values from the Bayesian hierarchical regressions of the
54 SST reconstructions for (c) the percent of total variance within all SST reconstructions explained by the eight climate
indicators, adjusted R2 values of the level one model from the bootstrap analysis and (d) the percent of total variance
between all cores explained by sin2(latitude), adjusted R2 values of the level two (hyperparameter) model. The eight
different climate indicators are Antarctic temperature (c1 in blue, c2 in cyan, and c3 in navy), Greenland temperature
(c4 in dark green and c5 in pink), GHG radiative forcing (c6 in orange and c7 in red), and bottom water oxygen-18
isotopes (c8 in black) (see section 2 and Table 1).
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4.2. Bayesian Hierarchical (Multilevel) Regression Analysis
A hierarchical/multilevel model is a regression model where two or more linked regressions are estimated
simultaneously; see Gelman and Hill [2007] for further details. Hierarchical models are able to simultaneously
analyze patterns of commonality and variability within and between SST reconstructions. The hierarchical
model is structured to match the grouping of the data in 54 SST reconstructions. One set of regressions
explains the variation within each SST reconstruction (a “level one” model), such as the linear relationship of
a single tropical SST reconstruction with changes in climate indicator like GHG forcing. Another set of regres-
sions explains the variation between the different SST reconstructions (a “level two” model), such as the effect
of latitude or proxy method on the estimates of local SST responsiveness of different SST reconstructions. The
level two equation models how the regression parameters from the level one model vary between the SST
reconstructions. The level one model is similar to equation (6), and the level two model is similar to equation (7)
from section 4.1. The Bayesian hierarchical regression is a coupling of those two multivariate regressions,
where the regression parameters for each core are sampled from a common distribution, defined by the level
two model.

The critical difference with Bayesian hierarchical regressions as compared to the frequentist approach in
section 4.1 is that Bayesian hierarchical regressions simultaneously estimate the two levels of regressions
and optimize the sharing of information across SST reconstructions [Gelman and Hill, 2007]. Through optimal
sharing of information, Bayesian hierarchical regressions enable significance tests of a larger variety of vari-
ables as compared to the methods discussed in section 4.1. Hierarchical models also enable the correct
characterization of the structure of the regression error terms (covariance matrix for the residuals). For these
reasons, the Bayesian hierarchical regression is the preferred method and the results of this paper focus on
the hierarchical model results.

This research applies a weighted least squares model for the level one regression model within the Bayesian
hierarchical regression using estimates of uncertainty in the SST proxy reconstructions. The level one model
includes two types of independent variables: (1) the eight different records investigated separately as poten-
tial climate indicators, X (matrix), and (2) variables that are thought to directly impact local SST change,
X0 (matrix), such as time or glacial versus interglacial periods. The regression coefficients for the climate
indicators, X, are 𝜷 j (vector) and are the estimates of local SST responsiveness, and they are modeled in the
level two regression model to estimate the effect of reconstruction-specific variables, Uj (vector), such as proxy
method, latitude, and ocean, on local SST responsiveness. The regression coefficients for Uj are G (vector). The
coefficients for X0 are 𝛽0 (vector) and are not modeled in the level two regression model.

Level one model ∶ ŷi ∼ N
(

X0
i 𝛽

0 + Xi𝜷 j[i], �̂�
2
yi

)
(8)

Level two model ∶ 𝜷 j ∼ N
(

UjG,𝚺B

)
(9)

where i is the index over the 12,105 SST point reconstructions, j is the index over the 54 SST reconstruc-
tions, ŷi is the SST reconstruction j at time ti (single value), �̂�2

yi
is the variance for predicted y value at time ti

(single value), and ˝B is the covariance matrix for the modeled coefficients. Residual analysis confirms that the
model specification of equations (8) and (9) is appropriate. For example, for the model results in Figure 6, the
level one residuals and level two residuals do behave as zero-mean white noise.

The core research presented here investigates the effect of latitude on local SST responsiveness. Such a
model includes a single variable of sin2(latitude) in Uj, which are core-specific variables thought to impact
SST responsiveness. It does not include X0 variables, which are variables thought to directly impact local SST
change. The results are shown in Figures 5c, 5d, and Table S3. The estimates calculated with the no pooling
or “independent” regressions (Figure 4 and Table S1) are very similar to those estimated from the Bayesian
hierarchical regressions (Figure 6 and Table S3), partially because there are a large number of observations in
each SST record (over 200 on average).

I estimate posterior distributions by fitting the above Bayesian hierarchical regressions using Markov Chain
Monte Carlo (MCMC) simulation and Gibbs sampling. I use an inverse Wishart model for the covariance matrix
of the modeled coefficients, ΣB [Gelman and Hill, 2007]. I implement this analysis using the program Just
Another Gibbs Sampler (http://www-fis.iarc.fr/˜martyn/software/jags/) via the “rjags” package in theR statisti-
cal program (http://cran.r-project.org/web/packages/rjags/index.html); see Text S2. I use the following priors
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Figure 6. Latitudinal pattern of local SST response to changes in
radiative forcing from GHGs. Each point represents the local SST
responsiveness of one proxy reconstruction to climate change,
represented here by deviations in GHG radiative forcing, as estimated
from Bayesian hierarchical regressions (section 4.2). Colors and shapes
as in Figure 4. Error bars display 95% intervals. The equator-to-pole
gradient of SST response is estimated using a Bayesian hierarchical
regression for sin2(latitude): the dashed line is the median estimate, and
the grey area is the 95% interval from the MCMC simulation. An additional
equator-to-pole gradient of SST response is estimated using a Bayesian
hierarchical regression for the effect of sin2(latitude), the Indian Ocean,
and the Mg/Ca proxy interactive with sin2(latitude) on local SST
responsiveness: the purple dashed line is the median estimate,
and the purple area is the 95% interval from the MCMC simulation.

for the regression coefficients and vari-
ances: uniform distribution (0,100) for
𝝈y and normal distribution (mean = 0,
standard deviation = 100) for all reg-
ression coefficients (𝜷0,G), as specified
by Gelman and Hill [2007]. I estimate
a Bayesian R2 for the level two model
that is analogous to the classical
adjusted R2 using the method from
Gelman and Hill [2007], which pro-
duces a conservative estimate.

I simulate the final models for 25,000
iterations, discard 5000 iterations as
burn in, and thin by one fourth. I run
all models for four independent chains,
with random initial values selected
from the priors. I confirm convergence
by finding that the Potential Scale
Reduction Factor R̂ diagnostic [Gelman
and Rubin, 1992] is roughly equal to
1 for all model parameters using the
“ggmcmc” package in the R statisti-
cal program (https://cran.r-project.org/
web/packages/ggmcmc/index.html).

There are some core-specific variables
that might directly impact local SST
change, either directly or in interaction

with the climate indicator variable. For example, there may be trends in SST over time due to issues with
the reconstruction or long-term cooling trends. Also, patterns of SST change may vary between interglacial
and glacial periods or between different periods in time (such as 100 kyr periods). The following additional
variables are evaluated in the level one model, X0: time (continuous), time (discrete, in 100 kyr periods), and
glacial versus interglacial periods (discrete indicator). All the variables in X0 are tested directly and in inter-
action with the climate indicator. Estimates of the dates of the last five interglacial periods (last 450 kyr)
are taken from a combination of resources [Sirocko et al., 2007; Jouzel et al., 2007; Jansen et al., 2007] to be
0–16 kyr, 114–133 kyr, 236–245 kyr, 321–338 kyr, and 395–427 kyr. All the level one variables (X0) are found
to not be significant across all eight climate indicators in directly changing SST response and in interaction
with the climate indicator (their estimated coefficients are not significantly different from zero at the 95%
confidence level).

There are some core-specific variables that might impact the responsiveness of SST. For example, loca-
tions at higher latitudes are likely to show greater changes in SST per a given climate change. However,
the exact functional relationship for patterns of SST responsiveness with latitude is debated in the litera-
ture [Hoffert and Covey, 1992; Covey et al., 1996; Shabalova and Können, 1995; Zachos et al., 1994], and thus,
several functional forms are tested here. In addition, the absolute SST of the core may influence its respon-
siveness as may the ocean basin or the proxy method. The following additional reconstruction-specific
variables are modeled in the level two model, Uj: proxy method, ocean basin, SST reconstruction length
(in time), SST reconstruction average resolution, SST reconstruction average temperature (over full core,
0–12 kyr, 30–90 kyr, and 0–100 kyr), functions of latitude (latitude, latitude2, latitude3, latitude4, sin(latitude),
sin2(latitude), sin3(latitude), sin4(latitude)), and functions of longitude (longitude, cos(longitude)), interac-
tions of sin2(latitude) with proxy, and interactions of sin2(latitude) with ocean. For ocean basin definitions,
I use boundaries from the current convention (International Hydrographic Bureau 1953) [MARGO Project
Members, 2009]: 20∘E as the boundary between the Atlantic and Indian Oceans, 147∘E as the boundary
between the Indian and Pacific Oceans, and 68∘W as the boundary between the Pacific and Indian Oceans. I do
not distinguish the Nordic Seas, Arctic Ocean, and Southern Ocean. The only level two, reconstruction-specific
variables (Uj) found to be significant in changing local SST responsiveness across all eight climate indicators
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(their estimated coefficients are significantly different from zero at the 95% confidence level) are the Indian
Ocean and the Mg/Ca proxy in interaction with sin2(latitude).

There is also uncertainty introduced from the particular set of 54 SST reconstructions, which are limited in
their spatial coverage and their temporal resolution. The nonrandom and limited samples make generaliza-
tions from specific proxy records uncertain. Moss and Schneider [2000] emphasize the need to quantify such
structural uncertainty. I test the sensitivity of the Bayesian regressions results to particular SST reconstructions
through 100 simulations of random resampling with replacement of the 54 SST reconstructions, repeated
for each of the eight climate indicators, and then rerun the Bayesian regressions. The variation in results
from such a bootstrap analysis reflects the uncertainty introduced from the specific sample of records. The
Bayesian regressions adequately estimate uncertainty in model coefficients but underestimate uncertainty in
adjusted R2 values for the level one models. I summarize results across all eight climate indicators as follows:
equal weighting to the ensemble of Antarctic temperature records, to the ensemble of Greenland tempera-
ture records, to the pair of GHG forcing reconstructions, and to the deep-sea oxygen isotope reconstruction.
In addition to resampling the 54 SST reconstructions, I test sensitivity to time by running 10 independent
analyses covering varying 100 kyr periods for each of the eight climate indicators. Time is also tested as an
independent variable in multiple forms in the level one model (see previous section on X0 components).

5. Results and Discussion
5.1. Local SST Responsiveness
This research examines the pattern of local SST response to climate change by regressing the 54 SST recon-
structions as a function of eight different climate indicators. Figure 3 illustrates example regression plots
for individual SST reconstructions. Figure 4 shows estimates of the local SST response relative to changes
in GHG radiative forcing for all 54 SST reconstructions from independent regressions (section 4.1). Figure 5a
shows the associated percent of variance explained within each SST reconstruction by the climate indicator
(estimated adjusted R2). The same analysis is repeated for all eight climate indicators, and the adjusted R2

values are summarized in Figure 5b. The local SST responsiveness estimates from the Bayesian hierarchical
regression (section 4.2 and Figure 6) are similar to the independent regressions (Figure 4) due to the large
sample size. However, there are some important differences between the results of Figures 4 and 6. Some out-
lier cores are pulled closer to the expected median of the hierarchical regression with reduced uncertainty
estimates. There also are important differences in the estimated latitudinal gradients of SST responsiveness
(see section 5.2).

The adjusted R2 estimates from the level one Bayesian hierarchical regressions displayed in Figure 5c repre-
sent the percent variation explained within all reconstructions by a single responsiveness variable for each
SST reconstruction. The percent of variance explained within each SST reconstruction when considered indi-
vidually (Figure 5b) has greater uncertainty than when considered together in a multilevel model (Figure 5c),
as would be expected. A single local responsiveness estimate for each SST reconstruction combined with a
climate indicator record is able to explain 64% (58% to 81%, 95% interval from the bootstrap analysis) of the
variation among all the 12,105 local SST estimates that span the last million years (Figure 5c). The deep-sea
oxygen isotope record has the greatest explanatory power for changes in local SST, but that is perhaps
because of the use of the oxygen isotope record in the dating of SST reconstructions.

The predictive capacity of local temperature response is stable over time and over random resampling of the
SST records, as tested by comparing the coefficient and adjusted R2 estimates from the level one Bayesian
hierarchical regressions across 100 kyr increments and across the bootstrap resampling of the 54 ocean
cores. These results suggest that there is a stable, linear relationship between local SST response and climate
changes over the past million years. Moreover, the concept of a stable value of local SST responsiveness is
robust across eight different climate indicators. This new variable of local SST responsiveness could be used
in other analyses as a coarse summary statistic for the behavior of different SST reconstructions, because it
captures over 60% of variation within the SST reconstructions.

5.2. Latitude
As is apparent in Figure 6, the estimates of local SST responsiveness display an expected pattern of the high
latitudes changing more than the tropics [Hoffert and Covey, 1992; Covey et al., 1996; Shabalova and Können,
1995; Zachos et al., 1994]. One metric to summarize the relative amplification of SST change with latitude or
the tropical attenuation of SST is to estimate the zonal (by latitude) mean temperature change relative to
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a specific global mean temperature change. Hoffert and Covey [1992] estimated latitudinal curves of zonal
mean temperature change relative to global mean temperature change for three different time points. They
found the same curve that described all three time points, despite dramatically different climate conditions.
Hoffert and Covey [1992] suggested that such a relationship might be a “universal curve” of the zonal tem-
perature change per global temperature change. Since their analysis, many proxy errors have been corrected
and more proxy data have become available, especially from ocean cores [Mix et al., 2001]. This research uses
an extensive database of over 12,000 SST proxy reconstructions over the past 400 kyr to test the concept of
a universal curve of SST response. The latitude results are limited to the past 400 kyr due to the availability of
high-latitude SST reconstructions.

Change in SST relative to change in climate indicators as a function of sin2(latitude) (Figure 6 and Table S3)
explains 50% (35% to 58%, 95% interval) of the observed variance in responsiveness between ocean cores,
as estimated by adjusted R2 estimates from the level two Bayesian hierarchical regressions (Figure 5d). Thus,
latitude alone can account for half of the differences observed between SST reconstructions from across the
globe, regardless of SST proxy, ocean basin, or time period. Over the past 400 kyr, SST change at 45∘N/S is
larger than the average tropical response by a factor of 1.9 (1.5 to 2.6, 95% interval) (Table S3).

The estimated latitudinal curve from the hierarchical model (Figure 6) is similar to the curve estimated from
the independent regressions (Figure 4) but has several key differences. The estimate of uncertainty is larger
at the tropical latitudes in the hierarchical model because of the model’s more robust analysis of uncertainty.
I define a summary metric for the latitudinal curves that pools results across the eight climate indicators
(see section 4.2 for weighting of the climate indicators): the ratio of SST change at 45∘N/S compared to
tropical SST change. The hierarchical regression model estimates a summary metric of 1.9 (1.5 to 2.6, 95%
interval), while the independent regression method estimates a similar summary metric of 2.0 (1.7 to 2.2, 95%
interval) but with insufficient uncertainty estimation. When proxy and ocean variables are included in the
level two model (see sections 5.3 and 5.4), the estimated latitudinal curve from the hierarchical model exhibits
the following critical changes (Figure 6): the tropical response increases due to the estimate of decreased
responsiveness in the Indian Ocean (section 5.3), and the latitudinal gradient is steeper due to the estimate of
attenuation of SST responsiveness with latitude in Mg/Ca ratio-based SST reconstructions (section 5.4). The
updated summary metric is still similar because the two effects roughly cancel each other out at 45∘N/S: 2.0
(1.5 to 2.6, 95% interval).

Previous research on latitudinal gradients focused on absolute temperature gradients and modeled temper-
ature as a function of sin(latitude) to the third [Zachos et al., 1994] or fourth power [Hoffert and Covey, 1992;
Covey et al., 1996; Shabalova and Können, 1995]. This analysis, however, finds the best fit for a function of
sin2(latitude) and finds no significant improvement in fit for other powers of latitude beyond a quadratic term,
with fit assessed from the adjusted R2 estimates from the level two Bayesian hierarchical regressions. The dif-
ference in latitude functions could be because others analyzed air surface temperature over the full latitude
range, whereas this research focuses on SST over 50∘N–50∘S. The different functional estimates could also
be due to improved SST proxy records, especially in the tropics. Rohling et al. [2012] also found a quadratic fit
for the latitudinal pattern of mean long-term linear temperature response from independent regressions of
36 SST reconstructions compared to a reconstruction global mean radiative forcing. Rohling et al. [2012] also
expanded their analysis to compare latitudinal patterns of SST to latitudinal patterns for changes in radiative
forcing. It is important to note that the symmetric latitudinal curve is a coarse approximation of the observed
pattern of SST responsiveness, and that more data would likely demonstrate asymmetry across the hemi-
spheres due to the unequal distribution of landmasses and varying ocean currents and the curve would not
necessarily be centered exactly at the equator.

Note that the estimated SST latitudinal response curves are limited to 50∘N–50∘S, because latitudes above
50∘N/S have a muted response to climate changes due to freezing and sea ice dynamics. There are insufficient
records available for high latitudes to estimate a functional relationship for this muted response. However, it
is worth noting that the zone of 50∘N to 50∘S still contains 77% of the Earth’s surface. In addition, the data
are insufficient to estimate significant differences between the Northern and Southern Hemispheres. The
estimates also are limited by the sparse availability of SST reconstructions from the North Pacific Ocean.

The estimated SST response curve is robust to a variety of sensitivity tests, suggesting that the curve is per-
haps generally “universal” [Hoffert and Covey, 1992] over the past 400 kyr. The SST response curve does not
vary significantly when tested independently over 100 kyr periods, between glacial and interglacial periods,
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Figure 7. Local SST responsiveness to changes in GHG radiative forcing differentiated by ocean at low latitudes and by
proxy at high latitudes. Longitudinal cross section of local SST response to GHG radiative forcing is displayed for tropical
latitudes (15∘N–15∘S) and high latitudes (40∘ –60∘N/S). (a) Shapes and colors indicate the ocean basin: North Atlantic in
blue circles, South Atlantic in red triangles, North Pacific in green diamonds, South Pacific in cyan asterisks, and Indian in
black squares. (b) Shapes and colors indicate the temperature proxy method as in Figure 4. Error bars are 95% intervals.

and during glacial terminations. The SST response curve also does not vary significantly with random resam-
pling of the cores or across the eight climate indicators, suggesting that the results are not contingent to
this specific combination of reconstructions. Local absolute SST does not significantly affect the average SST
change in response to climate indicators, once latitude is modeled.

5.3. Oceans
The only ocean variable with a coefficient significantly different from zero at the 95% confidence level is the
Indian Ocean. Tropical SST reconstructions from the Indian Ocean have a weaker local SST response to climate
changes than predicted by latitude alone for all eight climate indicators. The Indian Ocean displays a reduction
in response in tropical SST change of 50% (12% to 95%, 95% interval) less than that found at similar latitudes
in other oceans (Figure 7a). A literature search did not find discussions of a systematic muted response of
SST reconstructions in the Indian Ocean relative to other oceans. One of the ways the Indian Ocean differs
from the Atlantic and Pacific Oceans is that it “is bounded to the north by the Asian continent, preventing
northward heat export and only allowing weak ventilation of the Indian Ocean thermoclimate from the north”
[Schott et al., 2009]. Perhaps that difference in flow causes a modulation of the SST responsiveness of the Indian
Ocean, despite communication with the Pacific Ocean through the Indonesian Throughflow. In addition, other
research has found that global climate changes likely cause changes in the Indian Ocean Dipole [Cai et al.,
2013; Shukla et al., 2009]. Changes in the Indian Ocean Dipole may be driving the different SST responsiveness
observed in the Indian Ocean relative to other oceans.

5.4. Proxies
There is significant agreement among the different updated proxy SST reconstructions: coefficients for proxy
variables are not significantly different from zero at the 95% confidence level except for the interactive term
between Mg/Ca proxy and sin2(latitude). This result confirms recent claims that progress in SST proxy meth-
ods has successfully reduced many of the systematic biases found in previous reconstructions (see section 2).
These results extend previous multiproxy comparisons over continuous time and multiple reconstructions
in a single analysis and confirm significant progress in the proxy methods. When more than one SST recon-
struction is available from species abundance methods, I analyze separately the different analytical methods
and warm/cold season outputs and find that the local temperature response estimates are not significantly
different from each other. Therefore, I use a single-average result with a variance representing the different
estimates for each reconstruction using species abundance methods. The Mg/Ca ratio-based SST recon-
structions estimate significantly smaller SST response at higher latitudes, a reduction of 35% (7% to 59%,
95% interval) at 45∘N/S compared to the magnitude of other proxy methods at similar latitudes (Figure 7b).
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Other studies also have found significant deviation in Mg/Ca SST reconstructions from other proxy recon-
structions at high latitudes, including a tendency to underpredict SST variations [Kandiano et al., 2004; Barker
et al., 2005; Meland et al., 2005].

6. Conclusions

This research adds to our understanding of the response of SST to climate changes. It finds that a new
summary statistic of local SST responsiveness is able to explain over 60% of the variation within SST recon-
structions with only a single value per SST reconstruction. Moreover, the relationship between local SST
response and climate change over the past million years is linear and stable over time. The results are not
sensitive to the particular climate indicator chosen: eight climate indicators were evaluated.

This study finds evidence for a universal curve of local SST response as a function of latitude that is stable
over the past 400 kyr. The existence of such a universal curve advances our knowledge of how the climate
responds spatially to large changes in radiative forcing and provides important insights into the mechanisms
of key climate dynamics, such as polar amplification. This research also explores variation across SST proxy
methods. It finds remarkable agreement across proxy methods, with the exception of Mg/Ca proxy methods
estimating muted responses at high latitudes. The Indian Ocean also exhibits a muted temperature response
in comparison to other oceans.

This research illustrates the diversity of questions that can be tested by applying probabilistic analysis and
Bayesian hierarchical regressions to the study of past climate variables. These methods enable paleoclimatol-
ogists to investigate a greater number of variables and relationships with more explicit uncertainty estimates.
Moreover, this research develops a new method for incorporating consideration of uncertain timescales into
record intercomparisons. These uncertainty and statistical methods are well suited for application across
paleoclimate and environmental data series intercomparisons.
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